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Final Report
1) Foreword

This is the final report for an STIR grant awarded in September 2012 and ended in May 2013. The award provided important
seed funding for a project that formed the basis for one PhD thesis in my lab and helped to forge two important collaborations.
Below is provided a summary of the project during and after the award period. More technical details can be found in the two
publications referenced in this report.

2) Statement of the problem to be studied

The purpose of this project was to investigate the use of a unique class of self-assembling crystalline nanostructures as
reinforcing agents when incorporated as a minor component into polymeric composites. In particular, we were interested in self-
assembling units comprised of cyclic peptides (8-mers) with alternating D- and L-amino acids. This scaffold had previously been
shown to form nanotubular structures after solution-phase assembly, mediated by beta-sheet-like hydrogen bonding
interactions that promoted stacking of the individual units. The rationale was that the chemical synthesis of these cyclic peptides
could potentially yield a huge diversity in nanostructures by drawing upon the availability of Fmoc-protected amino acids with
diverse side chains. These diverse structures could then be tailored to specific applications. At the time, a similar class of self-
assembling nanostructured materials, based on the diphenylalanine scaffold, were mechanically characterized and declared to
be the stiffest known organic material.1 This, in part, inspired our investigation into the mechanical properties of D-, L-cyclic
peptides (DLCPs) and their potential application in reinforcing polymeric materials. The proposal was framed in the context of
stabilizing load-bearing resorbable biomedical implants, like spinal fusion cages and bone screws, which are currently made
from poly lactic acid and similar synthetic polymers, and sometimes fail prematurely and lead to poor healing outcomes for
patients. However, if the surface chemistry of the DLCP nanotubes could be customized, there might be many applications
where customizing polymer-filler interactions would be of utmost importance.

3) Summary of most important results
The actual term of the award lasted almost 12 months, during which time we were able to complete a preliminary investigation
into the primary proposal goal. First, we synthesized a particular DLCP composed of alternating glutamine and leucine amino
acids, QL4. This particular peptide was known to assemble from previous literature reports, but its micro-scale structure was ill-
defined. We determined that the peptides formed polydispersed crystalline needle-like aggregates, with dimensions of ~1
micron (length) and ~100 nm (diameter), composed of longitudinally aligned nanotubes. These “microcrystals” could be isolated
and co-dissolved with poly(D,L-lactic acid) (PDLLA) in organic solvents and then spun into microfibers using electrospinning.
The resulting fibrous meshes contained the peptide microcrystals embedded in a polymer matrix. We tested the fibers by
nanoindentation and found that the microcrystals increased the average stiffness of the fibers 5-fold. This work was published in
Biomacromolecules.2
During the course of this investigation, we were intrigued by the mechanical properties of the microcrystals, given their ability to
serve as filler materials in polymer composites. Therefore, after the award term concluded, we continued to build on our
previous work to perform a more detailed study on the mechanical properties of the microcrystals themselves. This led to
nanoindentation experiments and three-point bending experiments on the microcrystals, done with specialized instrumentation
found in our collaborators’ lab in Singapore. The results of these experiments demonstrated that the DLCP microcrystals were
comparable to the most mechanically robust proteinaceous materials known. This work was published in ACS Nano, and was
made possible by the initial seed funding from ARO.3

Overall, the DLCP self-assembling system remains intriguing for their mechanical properties. However, we found that their
assembly properties were much more adversely influenced by the peptide sequence than we originally hypothesized. For
example, the DLCP composed of alternating leucine and glutamic acid forms interesting nano-scale tubular structures, but they
were not robust enough to be harvested and incorporated into other fabrication protocols. Other DLCP sequences either did not
assemble at all, despite exploring a wide variety of assembly conditions, or formed large aggregates that could not be
resuspended in any solvents. Future work may explore conjugation of polymers to the amino acid side chains to increase
processability of the nanotubes and further investigations of their biocompatibility.

4) Bibliography

Please refer to our publications for relevant references

1. Even, N., Adler-Abramovich, L., Buzhansky, L., Dodiuk, H. & Gazit, E. Improvement of the Mechanical Properties of Epoxy
by Peptide Nanotube Fillers. Small 7, 1007-1011 (2011).

2. Rubin, D. J. et al. Mechanical Reinforcement of Polymeric Fibers through Peptide Nanotube Incorporation.
Biomacromolecules 14, 3370-3375 (2013).



3. Rubin, D. J. et al. Structural, Nanomechanical, and Computational Characterization of d, I-Cyclic Peptide Assemblies. ACS
nano 9, 3360-3368 (2015).

Technology Transfer

The Pl traveled to give invited talks at The ARL lab in Aberdeen, MD and the AFOSR lab in Dayton, OH. Slides from the talks
are included as an attachment.
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Synthetic Polymers Proteins
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peptides - > proteins - > networks of proteins



D,L-cyclic peptides (DLCPs)
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DLCPs are remarkably stiff

DLCP Crystal
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DLCPs are remarkably stiff
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DLCPs can reinforce polymeric fibers

Microcrystal
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Mechano-sensitive protein-polymer hybrids
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Mechano-sensitive protein-polymer hybrids
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Mechano-sensitive protein-polymer hybrids
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Mechano-sensitive protein-polymer hybrids
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Biosensing Platforms Based on Protein
Conformational Dynamics

A) Calmodulin Conformation Change 8) TEM1 f-lactamase

3 and P4
(N- and C- Termend) ™ m
PS5 P6 _Q‘ 2

ClUSL‘d Open Bound P11 and P2 —
Conformation Conformation Conformation

C-term BLA Calmodulin N-term BLA

Target Peptide

CaM
a
CaM ;—_'\'-_‘ a

BLA with No or Active BLA
Reduced Activity

Meister, et al. ChemBioChem 2013 14(12), 1460-1467

.......
School of Engiseering  WYSS T3 INSTITUTE
and Applied Sciences



----- > proteins -—> networks of proteins

nnnnnnn
School of Engiseering  WYSS $3 INSTITUTE



Engineered protein manufacturing

Compared to biological materials:
 Difficult to obtain pure and in large quantities

* Time consuming, less cost effective
Materials

* Not appropriate for large-scale materials fabrication
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Material design parameters

) Must be able to control sequence using conventional genetic engineering
2) Must be able to produce material on large scales by harnessing biosynthetic

potential of a living organism

3) No protein purification
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Biofilms

Self-standing, macroscopic, biosynthetic materials

Vlamakis, et al. Nat. Rev. Microbiol. 2013
weitzlab.seas.harvard.edu
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Biofilm Nano-architecture
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Domesticating the Microbe

Bacteria are dangerous!!! We understand how they work... We can exploit them.
(Germ Theory of Disease) (Antibiotics, Microbiology, Molecular Biology) (Recombinant DNA Technology)
Pasteur and Koch, early 19t century  Fleming, Watson, Crick , Lederberg, Brenner...et al. Cohen, Boyer, and Lobban

= > >
Biofilms are bad!!! We are starting to understand Can we exploit them?
how they work...

5
RELATION BETWEEN FOOD CONCENTRATION AND 7
SURFACE FOR BACTERIAL GROWTH! !
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BACTERIAL BIOFILMS: FROM
THE NATURAL ENVIRONMENT |

° ' TO INFECTIOUS DISEASES -!!..
Luanne Hall-Stoodley*, J. William Costertor?® and Paul Stoodley Pt S

1,2. Wikimedia Commons, 3. Time Magazine, Inc., 4. Genentech, 5. J. Bacteriol., 1940. 40(4):547, 6. Nat. Rev. Microb. 2004.2, 95-108, 7. Clin Rev Allergy Immunol, 2008. 35(3): 124,
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Industrial Biofilm Usage

Wastewater treatment Chemical processing

Microbial circuits
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Bacterial ECM Proteins: Functional Amyloids

http://labs.mcdb.lsa.umich.edu/labs/chapman/

* Mediate adhesion to surfaces

* Can be up to 60% of biofilm biomass



E. Coli: Curli Biosynthesis

Trends in Microbiology February 2012, Vol. 20, No. 2
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The BIND Concept

Biofilm-Integrated Nanofiber Display

e Nanofibers have diameters from
4-7nm and are tens of microns in
length.

E. coll AcsgA strain "

e Nanofiber network is robust
+ Seif-assembly of amylokd nanofiber network.

» Display of functonal peptide domains.

e Amyloids: strength comparable to

steel and stiffnesses comparable to
silk
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* Assembled from the secreted CsgB
protein (17.5kDa) which is
membrane-anchored.

* Easily detected using Congo Red,
which stains amyloid fibers.

* Assembly kinetics can be monitored
in vitro by Thioflavin T.
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CsdA Insertion Library

Periplasmic localization sequence

CsgG-mediated secretion sequence

3 22 (RICRI R RAL RS

N3,C3
N1, C1

S| Linker Region = no linker / GS / GSGGSG

Metal Binding Domain = KCTSDQDEQFIPKGCSK

Peter Nguyen



CsdA Insertion Library

Periplasmic localization sequence

+C' sgA

CsgG-mediated secretion sequence

(157

T N22 {R1{ R2{ R3C R4 RS

N3, C3
N2, €2
N1, C1

Linker Region = no linker / GS / GSGGSG

Congo Red assay
Red = amyloid formation
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CsdA Insertion Library

Periplasmic localization sequence

CsgG-mediated secretion sequence
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N3,C3
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E Linker Region = no linker / GS / GSGGSG

CsgA-MBD
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Metal Binding Domain = KCTSDQDEQFIPKGCSK
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CsgA-peptide Insertion Library

=

Peptide }| Sequence _ength (aa)| lype Function eference

HIS HHHHHH 6 \ffinity Tag Affinity Tag Bio/Technology 1988, 6(11): 1321.

GBP EPLQLKM 7 Substrate Binding Graphene edge binding JACS 2011, 133: 14480.

FLAG DYKDDDDK 8 \ffinity Tag Affinity Tag Nature Biotech. 1988, 6: 1204.

CNBP HSSYWYAFNNKT 12 Substrate Binding Carbon nanotube binding Nano. Lett. 2006, 6: 40.

A3 AYSSGAPPMPPF 12 Substrate Binding Gold surface binding Small 2005, 1(11): 1048.

Z8 LRRSSEAHNSIV 12 NP templating ZnS quantum dot templating J. Mater. Chem. 2003, 13: 2414.

E14 PWIPTPRPTFTG 12 NP templating CdS quantum dot templating J. Mater. Chem. 2003, 13: 2414.

CLP12 NPYHPTIPQSVH 12 Mineral templating | Hydroxyapatite nucleation _angmuir 2011, 27: 7620.

QBP1 PPPWLPYMPPWS 12 Substrate Binding Quartz/Glass binding Bioinformatics 2007, 23: 2816.

SpyTag || AHIVMVDAYKPTK 13 rotein Display Srirt‘;fs' covalent capture/display of | b\ s 2012, 109(12): E690.

BCCP GLNDIFEAQKIEWH 14 Protein Display Biotinylation tag Prot. Sci. 1999, 8: 921.

MBD KCTSDQDEQFIPKGCSK 17 Substrate Binding Binding to stainless steel surfaces Mol. Microb. 2006, 59(4): 1083.

CT43 CGPAGDSSGVDSRSVGPC 18 NP templating ZnS quantum dot templating JACS 2010, 132: 4731.

AFP8 E;:‘AS,\?AAAAAAN AAAA A EL_'I_I':;_\’-,\NAKAAA 37 Substrate Binding Ice crystal binding JBC 1998, 273(19): 11714.
GGTIWTGKGLGLGLGLGLGA\/I _ _ _

Mms6 GPIILGVVGAGAVYAYMKSRDI 59 NP templating Magnetite NP templating JBC 2003, 278(10): 8745.
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Quantifying CsgA-peptide production
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—> Most peptides <50 amino acids do not hinder protein secretion or assembly
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Most CsgA-peptide mutants form amyloids
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CsgA-MBD enhances adhesion to steel

Growth of cells in Induction of CsgA- S Cultures spotted S Vortexing S Imaging by
suspension culture |~ | MBD production | on coupon | wash | SEM

+ CsgA::MBD

MED KCTSDQDEQFIPKGCSK 17 Substrate Binding Binding to stainless sleel surfaces Mol. Microb. 2006, 59(4): 1083.
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CsgA-A3 templates AgNP growth

Grow of cells in  |-_s
suspension culture

Induce CsgA-A3
production

X

Form biofilm | .. [Incubate with|_.s [ Stain and
AgNO; image

on TEM grid

wt-CsgA CsgA-A3
wINDI™ MOJTVV IArININN I < QUUSUdE DEmany (e divwiue unminy INGIU. LULL ZUUD, U, %U.
AJ AYSSGAPPMPPF 12 Substrate Binding | Geld surface binding Small 2005, 1{11): 1048.
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CsgA-SpyT enable protein immobilization

r

Grow cells on |..s [Induce CsgA-SpyT| ..~.| Incubate with |__s
| glass substrate during growth GFP-SpyC

Wash un- | ..> | Stain and
bound protein

a DIND Nancltmer win
Spy a9 Pogts - Nititrary SpyTag-BIND
Py SApEa  \ IPvr_ro:? ve Ji‘
|
L e GFP.SpyCalcher
P SpyCanchver
v 4 TN AR Doerndsiny

-~

B3 -—30

i

Spy Tag-8IND

GFP-SpyCatcher,..

&% 50

Widtype Curt
+
GFP.SpyCalcher

B x3»0
SpyTag | AHIVMVDAYKPTK 13 | Protein Display S:)?(::d: covalent captureidisplay of | o\ s 2012, 109(12): E690.
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BIND as a catalytic substrate

E “C N _o’ e arih
SpyTag Peptde Amylase

G Enzyme

’ ; % A :—_:l": cher

. o
=N
b4

B ..
&;{2 usOn
* Hydrolyzes alpha glycosidic bonds of sugars. o N swon
+ Used for: o ‘e 2 ‘e 2 ‘mad ‘B
— Ethanol production laﬂwu
— HFCS production S <l
— Laundry detergents ,0\.»_4
Gusose
.

Accounts for ~30% of world-wide industrial enzyme production
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BIND as a catalytic substrate

BIND Naoftome arth

SpyTag Peptce Amylase
G Enzyme
v
) o A i:'f‘- cher
‘{r;:;'v‘a. 4
.,'.::.;_o vaile
\}4-‘.0 Uson
7';: 19
ko=

Grow cells in | ..s [Induce CsgA-SpyT| .. | Filter through [ ..s | Incubate with |..s.[Monitor catalytic
suspension culture in culture 0.2 um filter Amylase-SC activity
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BIND as a catalytic substrate
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BIND as a catalytic substrate

BIND Nanoftwe mith

SpyTag Pepace Amylase
c Enzyme
" ;; Ry "' A | SpyCatchar
'\\ ' » DM\JI'\
3 c I
B “Covslent
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Co-assembly of Two CsgA Variants

+
Combine BIND functions: l

* Surface adhesion 9
* Catalysis
»
* Binding to soluble species o
PN

Curli co-polymer




Bifunctional Curli Networks

23 <»O
_ A
Two CsgA::peptide variants can be displayed :
simultaneously to create multifunctional A
. A
materials A
LA
Function |: SpyTag Function 2: FLAG tag
(Venus::SC-immobilization) (anti-FLAG 1°, 633nm Dylight 2°)
3;’.:-';‘\- ; ."'- ‘ _-".-.‘., “ - :
ECE O ey
A0
GFP detection DyLight 633 detection DiC
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Scale bars =1 um Scale bars =200 nm

Amyloid material remains intact after harsh treatments (solvents, pH)
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Curli operon optimization

P— CsgD _/

AspS59
Y
csgG csgF ¥ csgE!  csgD csgB @ csgA ¥ @

o ® T T T_t_ ¢
et
Amyloid structure «—
Amyloid nucleation «—
T » Export
———» Chaperone «

" Transcriptional regulation
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csgG

NARVARD

Curli operon optimization
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[Library of mutants with varying

roduction levels for each music]
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|

Screen library for amyloid
formation

|
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Identify mutants with optimal
curli production
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BIND: what is it good for?

Combining the versatile functions of recombinant proteins with scalable
materials fabrication

CAPABILITIES

e Specific surface adhesion

* Nanoparticle templating

 Enzymatic catalysis

e Specific binding and capture of soluble entities
(metals, small molecules, proteins, viruses, cells)

e Large scale material production
(biofilm paint, spray-on coatings, self-standing 3D materials)

e Environmental responsiveness
(sensing, programmed formation/breakdown, dynamic properties)

e Programmed biological interactions
(antimicrobial coatings, live biotherapeutic)
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BIND for biocatalysis



¥« Poor catalyst recycling/
recovery
* Limited catalyst stability

Existing
biocatalysis
strategies

* Activity affected by
immobilization

* Cost of substrate and

processing

* Limited substrate diversity
* Contaminants complicate
product purification
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Modular immobilization strategy

No enzyme purification or processing affected by

ilization
substrate and
5ing

e Limited subst
e Contaminants
product purifi¢

* Enhanced enzyme stability

Diverse substrate tolerance

.
»
....

Compatible w/ continuous flow processes

Whole-cell catalyst

Surface-immobilized catalyst
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Enzymatic BIND for water decontamination

SIND Nanoftar wih

SpyTog Peptide
M
o . C
g AL, ) . ‘

H =G Covalent
| Fusion
CH,
ATRAZINE

=  EPA Maximum Contaminant Level
(MCL) = 3ppb

* Frequently found to be above 5ppb in

the mid-east and mid-west Estimated maximum 21.day
moving-average concentration of
atrazine, in micrograms per liter

Not modelod
<05
05-50
>50-500
> 50.0

= 0.lppb = endocrine disruption

nnnnnnn
School of Engiseering  WYSS XS INSTITUTE



Enzymatic BIND for water decontamination

PSR

| H N

Atrazine

OH

AtzA N /I\

—_— N
WINPR
/\NHJ\N//kNH

2-hydroxyatrazine

NH

44

Enzymatic water decontamination is inefficient and expensive:

* Naturally occurring strains do not eliminate atrazine to acceptable levels

* Cost of enzyme purification is too high

 Limited substrate diffusion across cell membrane inhibits breakdown with whole cells

—> Can BIND facilitate an efficient continuous flow atrazine decontamination system by
displaying enzymes?
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BIND for specific metal removal/recovery



The need for rare earth metals

Rare eart_h minerals

Group of 17 clemants used In & wide ange of CONSUMEr Products

Features: T dicbal Production of
Rare Earth Oudes.
waybm > Soft maleable  China supplies at least 56 1950 - 2000
and ductie percent of world's rare earths
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SEPARATING RARE EARTHS at MOUNTAIN PASS

Contains 15 rove eorth elemends

C C

Ackd Acid

Acid

Mixture Mixture

efements

MMMMWWMM Light
CoN seporate the comdination of RIT wto beowes ond Bghts ights
{vmpdlied schemeotic |
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Rare earth isolation and separation

. BIND Nanolwre with
Terbium Metal Binding Pegtide

(Tb) . i

Lanthanide binding peptides
Nitz, et al. Angewandte 2004 43(28) 3682.

Mixture of soluble
metal species

]

earth binding domains
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Other possible BIND applications

BIOFUEL PRODUCTION WATER PURIFICATION

PROTECTIVE

CELL CAPTURE/ COATINGS BIO-ELECTRODE
AFFINITY SEPARATIONS INTERFACE

b 4 |
-
Y Q}ﬁ

~ " BIOSENSING DECONTAMINATION ~ -

\}/
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Benefits of Biofilm Technology

* Self-generated and self-renewing scaffold; the
bacterium as a nanomaterial factory.

* Vast surface area for immobilization.

* Robust — stable under conditions normally
considered harsh for biology

= Easily scalable — could lead to cost
effective large scale solutions.

= Living material — may allow for
dynamic temporal control over
material properties

= A green technology for
nanomaterials.
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